中国学术文献网络出版总库

刊名: 基础教育课程
主办: 教育部基础教育课程教材发展中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-6715
CN: 11-5187/G
邮发代号: 80-447
投稿邮箱:jcjykczz@163.com

历史沿革:
现用刊名:基础教育课程
曾用刊名:中小学图书情报世界
创刊时间:1993

“暴露式”数学教学过程研究

【作者】 李 峰 陈浩允

【机构】 山东省临沂涑河小学 山东省临沂兰山小学

【摘要】
【关键词】
【正文】  摘 要:随着教学改革的不断深入,已有不少教师认识到数学教学的本质应是“数学思维活动过程”的教学。在这一“活动过程”的教学中,应暴露数学概念的形成过程、规律的探索过程、结论的推导过程及方法的思考过程等。要让学生在原有知识和经验的基础上,在主动参与中,通过操作和实践,由外部活动逐渐内化,完成知识的发展过程和“获取”过程,使学生既长知识,又长智慧。
  关键词:“暴露式”教学法 数学教学 过程研究
  长期以来,数学教学一直停留在知识型的教学模式上。教学中,过于强调对数学概念、法则、性质、公式的灌输与记忆,忽视了对这些知识的产生、发展、形成和应用过程的揭示和探究,不善于将这一过程中丰富的思维训练因素挖掘出来,也不善于将知识中蕴藏的丰富的思想方法加以暴露,学生学到的是无本之木,无源之水的知识。随着教学改革的不断深入,已有不少教师认识到数学教学的本质应是“数学思维活动过程”的教学。在这一“活动过程”的教学中,应暴露数学概念的形成过程、规律的探索过程、结论的推导过程及方法的思考过程等。要让学生在原有知识和经验的基础上,在主动参与中,通过操作和实践,由外部活动逐渐内化,完成知识的发展过程和“获取”过程,使学生既长知识,又长智慧。下面谈谈我的做法和体会。
  一、概念形成过程的教学
  数学概念是人们对数学现象和过程的认识在一定阶段上的总结,是以精辟的思维形式表现大量知识的一种手段。在概念教学中,我首先暴露概念提出的背景,暴露其抽象、概括的过程,将浓缩了的知识充分稀释,便于学生吸收。
  例如,“体积”概念的教学,就应紧扣概念的产生、发展、形成和应用的有序思维过程来精心设计。
  1.首先让学生观察一块橡皮擦和一块黑板擦,问学生哪个大,哪个小?又出示两个棱长分别是5厘米和3厘米的方木块,问学生哪个大,哪个小?通过比较,学生初步获得物体有大小之分的感性认识。
  2.拿出两个相同的烧杯,盛有同样多的水,分别向烧杯里放入石子和石块,结果水位明显上升。然后引导学生讨论烧杯里的水位为什么会上升?学生又从这一具体事例中获得了物体占有空间的表象。
  3.引导学生分析、比较,为什么烧杯里的水位会随着石块的增大而升高。在这一思维过程中,学生就能比较自然地导出:“物体所占空间的大小叫作体积”这一概念。
  4.接着我又让学生举出其它有关体积的例子,或用体积概念解释有关现象,使体积概念在应用中得到巩固。如先在烧杯里盛满水,然后放入石块,问学生从杯里溢出的水的多少与石块有什么关系?经过观察、分析,学生便能准确地回答:从杯里溢出的水的体积与石块的体积相等。接着再把石块从水中取出,杯里的水位下降,学生立即说出,水位下降的部分,就是石块所占空间的体积。这样,既提高了学生的学习兴趣,又加深了对新学概念的理解。
  二、规律探索过程的教学
  课堂教学是师生的双边活动,教师的“教”是为了诱导学生的“学”。在教学过程中,我常根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律。这对学生加深理解旧知识,掌握新知识、培养学习能力是十分有效的。
  例如,教学“能化成有限小数的分数的特征”时,课始,我就很神秘地请学生考老师,让学生随意说出一些分数,如1/2、5/6、7/25、7/15……我很快判断出能否化成有限小数,并让两个学生用计算器当场验证,结果全对。正当学生又高兴又惊奇时,我说:“这不是老师的本领特别大,而是老师掌握了其中的规律,你们想不想知道其中的奥秘呢?”学生异口同声地说:“想”。从而创设了展开教学的最佳情境。我紧接着问:“这个规律是存在于分数的分子中呢?还是存在于分数的分母中?”当学生观察到7/25与7/15,分子相同,但7/25能化成有限小数,而7/15却不能时,学生首先发现规律存在于分母中。我追问:“能化成有限小数的分数的分母有什么特征呢?”学生兴趣盎然地议论开了:有的同学说分母是合数的分数,但7/15不能化成有限小数,而1/2却又能化成有限小数;有的同学又说分母应是偶数的分数,但5/6不能化成有限小数,7/25却可以化成有限小数……这时,我不再让学生争论了,而是启发学生试着把分数的分母分解质因数,从而发现了能化成有限小数的分数特征。
  三、结论推导过程的教学
  数学是一门逻辑性很强的学科,它的逻辑性强,首先反映在系统严密、前后连贯上,每个知识都不是孤立的,它既是旧知识的发展,又是新知识的基础。遵循小学生的认识规律,引导学生运用已有知识去推导新的结论,才能发展学生的学习能力。例如,教学《面积单位间的进率》时,启发学生:我们已学过长度单位,知道每相邻两个单位间的进率是10,就是1米=10分米、1分米=10厘米等。那么,现在学习面积单位,它们每相邻的两个面积单位间的进率是多少呢?这一数学结论我并没有直接告诉学生。凡新旧知识间有联系的,我都要让学生运用已有的结论,通过自己的思考,推导出新的数学结论。如,可以让学生拿出边长1分米的正方形,先用分米作单位量一量边长,说出它的面积是多少平方分米。然后再想想用厘米作单位,边长应是多少厘米,它的面积是多少平方厘米。从而推导出1平方分米=100平方厘米。紧接着再让学生用左手拿着1平方分米的方块,右手拿着1平方厘米的方块,看看1平方分米含有多少个(10×10)平方厘米,以便牢固地记住1平方分米与1平方厘米间的进率是100的结论。用同样的方法也可以推导出1平方米=100平方分米。最后得出结论:每相邻两个面积单位间的进率是100。
  四、方法思考过程的教学
  过去我讲课时,急于代替学生思考,把一些计算或解题的方法和盘地教给学生,这种教学,学生吃的是现成饭,学得快,忘得也快,更谈不上自己去寻找方法。为了改变这种状况,我只在教学重点的地方设问,在关键处启发,然后让学生动脑、动手寻找方法解决问题。思考过程是一种艰苦的脑力劳动过程,我不仅要求学生勤于思考,而且还要善于思考。
  杜学哲,将生活情境融入小学数学中的教学方法[J]. 学苑教育. 2014(10) 
  参考文献:
  1马关庆,创设生活情境 促进主动发展[J]. 学周刊. 2013(02) 
  2 徐慧,利用生活情境开展小学数学教学[J]. 考试周刊. 2014(21) 
  3 梁艳梅,新课程小学数学课堂教学改革中的几点做法[J]. 中国校外教育. 2013(35) 
  4李英伟,提升小学数学课堂教学质量的方法[J]. 科技创新导报.2013(32)