刊名: 基础教育课程
主办: 教育部基础教育课程教材发展中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-6715
CN: 11-5187/G
邮发代号: 80-447
投稿邮箱:jcjykczz@163.com
历史沿革:
现用刊名:基础教育课程
曾用刊名:中小学图书情报世界
创刊时间:1993
数学课堂提问的种类和作用
【作者】 韩 曌
【机构】 贵阳市乌当区新天九年制学校
【摘要】【关键词】
【正文】 摘 要:课堂提问可依据所提问题的类型不同而进行分类,也可根据提问的目的和作用分类。实际上,提问是师生双方的口语双向交流,教师更要关注的是提问对于学生思维活动的激发和主体作用的体现问题。数学课堂上提问分为复述性提问、铺垫性提问、理解性提问、探索性提问、效果性提问和概括性提问。
关键词:课堂提问;提问类型;激发思维
课堂提问可依据所提问题的类型不同而进行分类,比如美国的贝尔在《中学数学的教与学》中按照事实、技能、概念、原理四种对象与认识、理解、应用、分析、综合、评价六种认知水平交叉结合,把问题分成24种类型(如事实理解、事实分析、技能应用、技能评价、概念认识、原理综合等)。也可根据提问的目的和作用分为引入性提问、复习性提问、启发性提问、显示性提问、表现性提问、激趣型提问、联想型提问、类比型提问、悬念型提问、迁移型提问、暗示型提问、猜想型提问、发散型提问、反馈型提问等类型。这是从教师的主观愿望的角度考虑的分类。
一、复述性提问
复述性提问,即要求学生复述教材的提问。教科书里重要的概念、公理、定理、性质、法则,是数学基础知识的组成部分,也是学生数学思维的重要“元件”,许多内容学生必须首先熟记它们。例如,与三角形全等有关的一系列判定定理和性质定理,学生如果不能熟记,这一章的证明和计算将难以掌握。教师不时在课堂上进行提问并要求学生复述,是促使学生熟记的有力手段。要求学生复述教材的提问,往往在新教材进行后的一段时间,也可以在以后用到它们时事先提问。当然,这类机械复述要以先讲清产生这些结论的过程为前提,以这些结论的运用为目的。我们仍然不主张不求甚解的死记硬背。因此,这类提问所占比重并不高。
二、铺垫性提问,铺垫性提问,即学生学习新知识前的提问。这种提问的目的是为学生学习新教材扫清障碍,垫铺性提问的问题所涉及的内容往往是学生已经学过,并且在讲新知识时又要用到的。例如,在讲“一元一次方程”之前,教师可先提问方程的概念、等式的概念,然后在此基础上讲一元一次方程的概念。这样做有利于新、旧教材的相互联系,易于使学生达到有意义学习。教师所提问题的形式应更多注重灵活性,以避免学生照书直答,对于上例,可以这样来提问:
1、你能找到题中的等量关系,列出方程吗?
2、你对方程有什么认识?
3、列方程解决实际问题的关键是什么?
这样的问题,学生仅靠翻书是无法得到答案的。学生若要准确回答这些问题,就得开动脑筋思考。这显然比教师直问概念、性质,学生照书直答好一些。
三、理解性提问,理解性提问,即为加深学生对知识的理解进行的提问。学生刚学新概念、新规律后,并不是马上就能理解。为了加深学生的理解,教师可以提出一些不太复杂的问题,促使学生对所学概念有比较清晰的理解。例如,学生学了“整式的加减”,对“合并同类项”往往理解不深,不易与数之间建立有意义的联系。教师可以考虑提出“3张桌子+2张椅子=?;5个男同学+3个女同学=?”等问题,但此类问题不宜过多、过深。象这样为深化概念和规律而提出问题,在初中数学教学中有广泛的运用。
四、探索性提问 探索性提问,即引导学生探索解题思路的提问。这样的问题提问应能启发学生积极思维,帮助他们主动探索解题思路。此类问题并不需要很多,并且不能离开学生的实际水平。提问的梯度不能太大,否则启而不发;梯度也不能太小,否则学生的思维过程被教师“包办”。例如习题:“2n-1与2n+1表示两个连续奇数,说明这两个连续奇数的平方差是8的倍数。”教学时依题意写出(2n+1)2-(2n-1)2之后,可以考虑提出这样的问题:“将上式变形为怎样的形式,就可以说明它是8的倍数?”为的是启发学生明确变形的目标,避免盲目推导。这样的问题,一定程度上揭示了解题的思维过程,对学生具有一定的启发性。
五、概括性提问,概括性提问,即要求学生概括学习材料的提问,对学习材料能够进行概括,才能提高数学教学的理论水平。教师进行概括当然是可以的,但是,有些时候概括过程让学生来做,有利于培养学生的数学能力。此类问题的提问可选择中等难度的材料。例如,(1)5x-2=8;
解:方程两同时加上2,得5x-2+2=8+2.
也就是5x=8+2.
方程两边同除以5,得 x=2.
此题学生可能会用差+减数=被减数的方法
(2)5x-2=8x
解:方程两都加上2-8x,得5x-2+2-8x=8x+2-8x
也就是5x-8x=2.
化简,得-3x=2.
方程两边同除以-3,得 x=-■.
此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边.
设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么?
设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?
设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上的目的是什么?
归纳:像这样把原方程中的某一项改变___后,从___一边移到 ,这种变形叫做移项___
思考:(1)移项的依据是什么?移项的目的是什么?
(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)
目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.
实际效果:生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.
如:解方程:
1-■x=3x+■ -■x-3x=-■-1
方程(1)中的■没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解清楚造成的.
时代在不断进步,社会在不停前行。同样,教育教学理念也应与时俱进。
关键词:课堂提问;提问类型;激发思维
课堂提问可依据所提问题的类型不同而进行分类,比如美国的贝尔在《中学数学的教与学》中按照事实、技能、概念、原理四种对象与认识、理解、应用、分析、综合、评价六种认知水平交叉结合,把问题分成24种类型(如事实理解、事实分析、技能应用、技能评价、概念认识、原理综合等)。也可根据提问的目的和作用分为引入性提问、复习性提问、启发性提问、显示性提问、表现性提问、激趣型提问、联想型提问、类比型提问、悬念型提问、迁移型提问、暗示型提问、猜想型提问、发散型提问、反馈型提问等类型。这是从教师的主观愿望的角度考虑的分类。
一、复述性提问
复述性提问,即要求学生复述教材的提问。教科书里重要的概念、公理、定理、性质、法则,是数学基础知识的组成部分,也是学生数学思维的重要“元件”,许多内容学生必须首先熟记它们。例如,与三角形全等有关的一系列判定定理和性质定理,学生如果不能熟记,这一章的证明和计算将难以掌握。教师不时在课堂上进行提问并要求学生复述,是促使学生熟记的有力手段。要求学生复述教材的提问,往往在新教材进行后的一段时间,也可以在以后用到它们时事先提问。当然,这类机械复述要以先讲清产生这些结论的过程为前提,以这些结论的运用为目的。我们仍然不主张不求甚解的死记硬背。因此,这类提问所占比重并不高。
二、铺垫性提问,铺垫性提问,即学生学习新知识前的提问。这种提问的目的是为学生学习新教材扫清障碍,垫铺性提问的问题所涉及的内容往往是学生已经学过,并且在讲新知识时又要用到的。例如,在讲“一元一次方程”之前,教师可先提问方程的概念、等式的概念,然后在此基础上讲一元一次方程的概念。这样做有利于新、旧教材的相互联系,易于使学生达到有意义学习。教师所提问题的形式应更多注重灵活性,以避免学生照书直答,对于上例,可以这样来提问:
1、你能找到题中的等量关系,列出方程吗?
2、你对方程有什么认识?
3、列方程解决实际问题的关键是什么?
这样的问题,学生仅靠翻书是无法得到答案的。学生若要准确回答这些问题,就得开动脑筋思考。这显然比教师直问概念、性质,学生照书直答好一些。
三、理解性提问,理解性提问,即为加深学生对知识的理解进行的提问。学生刚学新概念、新规律后,并不是马上就能理解。为了加深学生的理解,教师可以提出一些不太复杂的问题,促使学生对所学概念有比较清晰的理解。例如,学生学了“整式的加减”,对“合并同类项”往往理解不深,不易与数之间建立有意义的联系。教师可以考虑提出“3张桌子+2张椅子=?;5个男同学+3个女同学=?”等问题,但此类问题不宜过多、过深。象这样为深化概念和规律而提出问题,在初中数学教学中有广泛的运用。
四、探索性提问 探索性提问,即引导学生探索解题思路的提问。这样的问题提问应能启发学生积极思维,帮助他们主动探索解题思路。此类问题并不需要很多,并且不能离开学生的实际水平。提问的梯度不能太大,否则启而不发;梯度也不能太小,否则学生的思维过程被教师“包办”。例如习题:“2n-1与2n+1表示两个连续奇数,说明这两个连续奇数的平方差是8的倍数。”教学时依题意写出(2n+1)2-(2n-1)2之后,可以考虑提出这样的问题:“将上式变形为怎样的形式,就可以说明它是8的倍数?”为的是启发学生明确变形的目标,避免盲目推导。这样的问题,一定程度上揭示了解题的思维过程,对学生具有一定的启发性。
五、概括性提问,概括性提问,即要求学生概括学习材料的提问,对学习材料能够进行概括,才能提高数学教学的理论水平。教师进行概括当然是可以的,但是,有些时候概括过程让学生来做,有利于培养学生的数学能力。此类问题的提问可选择中等难度的材料。例如,(1)5x-2=8;
解:方程两同时加上2,得5x-2+2=8+2.
也就是5x=8+2.
方程两边同除以5,得 x=2.
此题学生可能会用差+减数=被减数的方法
(2)5x-2=8x
解:方程两都加上2-8x,得5x-2+2-8x=8x+2-8x
也就是5x-8x=2.
化简,得-3x=2.
方程两边同除以-3,得 x=-■.
此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边.
设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么?
设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?
设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上的目的是什么?
归纳:像这样把原方程中的某一项改变___后,从___一边移到 ,这种变形叫做移项___
思考:(1)移项的依据是什么?移项的目的是什么?
(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)
目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.
实际效果:生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.
如:解方程:
1-■x=3x+■ -■x-3x=-■-1
方程(1)中的■没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解清楚造成的.
时代在不断进步,社会在不停前行。同样,教育教学理念也应与时俱进。


