刊名: 基础教育课程
主办: 教育部基础教育课程教材发展中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-6715
CN: 11-5187/G
邮发代号: 80-447
投稿邮箱:jcjykczz@163.com
历史沿革:
现用刊名:基础教育课程
曾用刊名:中小学图书情报世界
创刊时间:1993
浅谈初中生数学解题能力的培养
【作者】 唐代国
【机构】 四川省武胜县烈面镇初级中学校
【摘要】【关键词】
【正文】 美国著名的心理学家威廉·詹姆斯这样说:解题是最突出的一类特殊的自由思维。解数学题是数学学习中最重要的一种活动,是数学训练中最主要的学习方式。其本质目的是锻炼学生解决实际生活问题的能力。
一、认真分析,找准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:如右图,AB=DC,AC=DB。求证:∠A=∠D。此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
二、巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
三、数学思想,提高能力
解题是人类最富有特征的一种活动,是学生学习数学的中心环节,是一种实践性技能,是发展数学思维能力、培养良好心理素质的重要手段。正因为如此,解题在数学教学中具有重要的地位。解题不仅仅是解题类型+方法,这种模式虽然能够巩固所学的知识,并能够加强基本方法的训练,但忽视了解题目标、过程的分析,以及解题中数学思维方法的培养,导致学生创造能力下降,缺乏独立开拓的创新意识。
渗透数学思想方法的教学只有注意问题内在数学结构的分析,并应努力帮助学生掌握数学的思维方法,注意了思想方法的分析,我们才能把数学课讲活、讲懂、讲深。所谓"讲活",就是让学生看到活生生的数学知识的发生发展过程,而不是死的数学结论;所谓"讲懂",就是让学生真正理解有关的数学内容,而不是囫囵吞枣、死记硬背;所谓"讲深",则是指使学生不仅能掌握具体的数学知识,而且也能领会内在的思想方法。
四、化难为易,化繁为简
解数学题最根本的途径是"化难为易,化繁为简,化未知为已知",也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。比如,我们学校要扩大校园面积,需要向镇上征地。镇上给了一块形状不规则的地,如何丈量的它的面积呢?首先使用小平板仪(有条件的话,可使用水准仪或经纬仪)依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。"转化"的思想,是解题重要的思维习惯。面对难题,面对没有见过的题,首先就要想到转化,也总是能够转化的。平时,要多留心老师是怎样解题的,是怎样"化难为易,化繁为简,化未知为已知"的。同学之间也应多交流交流成功转化的体会,深入理解转化的真正含义,切实掌握转化的思维和技巧。
五、倒推分析,破解应用题
从应用题的问题开始,一步一步倒着推理,直至解决问题,这种方法称为倒推法,也叫分析法。倒推思路的思维过程是:从应用题的所求问题出发,找出解答这个问题的两个必要条件,哪个是已知的,哪个是未知的。对于未知条件,把它作为问题,再去找解决它的两个条件,这样不断推究下去,直到所需要的条件都是题目中已知条件为止,这时问题也就解决了。一般复合应用题(即两步以上的应用题),尤其是难度较大的复合应用题,运用倒推思路来解答,效果较好。
六、掌握方法,巧解客观题
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法。
验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法也称代入法)。当遇到定量命题时,常用此法。
特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而做出正确的结论的解法。
图解法:借助于符合题设条件的图形或图象的性质、特点来判断,做出正确的选择称为图解法。图解法是解选择题常用方法之一。
分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果。
总之,数学知识的传授是离不开解题的,要让学生在理解知识的基础上,激发解决问题的积极性,师生形成与良性互动,教师在教授知识的同时帮助学生培养思维多样性,综合提高学生的各项学习能力。
一、认真分析,找准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:如右图,AB=DC,AC=DB。求证:∠A=∠D。此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
二、巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
三、数学思想,提高能力
解题是人类最富有特征的一种活动,是学生学习数学的中心环节,是一种实践性技能,是发展数学思维能力、培养良好心理素质的重要手段。正因为如此,解题在数学教学中具有重要的地位。解题不仅仅是解题类型+方法,这种模式虽然能够巩固所学的知识,并能够加强基本方法的训练,但忽视了解题目标、过程的分析,以及解题中数学思维方法的培养,导致学生创造能力下降,缺乏独立开拓的创新意识。
渗透数学思想方法的教学只有注意问题内在数学结构的分析,并应努力帮助学生掌握数学的思维方法,注意了思想方法的分析,我们才能把数学课讲活、讲懂、讲深。所谓"讲活",就是让学生看到活生生的数学知识的发生发展过程,而不是死的数学结论;所谓"讲懂",就是让学生真正理解有关的数学内容,而不是囫囵吞枣、死记硬背;所谓"讲深",则是指使学生不仅能掌握具体的数学知识,而且也能领会内在的思想方法。
四、化难为易,化繁为简
解数学题最根本的途径是"化难为易,化繁为简,化未知为已知",也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。比如,我们学校要扩大校园面积,需要向镇上征地。镇上给了一块形状不规则的地,如何丈量的它的面积呢?首先使用小平板仪(有条件的话,可使用水准仪或经纬仪)依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。"转化"的思想,是解题重要的思维习惯。面对难题,面对没有见过的题,首先就要想到转化,也总是能够转化的。平时,要多留心老师是怎样解题的,是怎样"化难为易,化繁为简,化未知为已知"的。同学之间也应多交流交流成功转化的体会,深入理解转化的真正含义,切实掌握转化的思维和技巧。
五、倒推分析,破解应用题
从应用题的问题开始,一步一步倒着推理,直至解决问题,这种方法称为倒推法,也叫分析法。倒推思路的思维过程是:从应用题的所求问题出发,找出解答这个问题的两个必要条件,哪个是已知的,哪个是未知的。对于未知条件,把它作为问题,再去找解决它的两个条件,这样不断推究下去,直到所需要的条件都是题目中已知条件为止,这时问题也就解决了。一般复合应用题(即两步以上的应用题),尤其是难度较大的复合应用题,运用倒推思路来解答,效果较好。
六、掌握方法,巧解客观题
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法。
验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法也称代入法)。当遇到定量命题时,常用此法。
特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而做出正确的结论的解法。
图解法:借助于符合题设条件的图形或图象的性质、特点来判断,做出正确的选择称为图解法。图解法是解选择题常用方法之一。
分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果。
总之,数学知识的传授是离不开解题的,要让学生在理解知识的基础上,激发解决问题的积极性,师生形成与良性互动,教师在教授知识的同时帮助学生培养思维多样性,综合提高学生的各项学习能力。