中国学术文献网络出版总库

刊名: 基础教育课程
主办: 教育部基础教育课程教材发展中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-6715
CN: 11-5187/G
邮发代号: 80-447
投稿邮箱:jcjykczz@163.com

历史沿革:
现用刊名:基础教育课程
曾用刊名:中小学图书情报世界
创刊时间:1993

是方法更是意识

【作者】 李洁桦

【机构】 浙江省绍兴市柯桥区实验小学新校区

【摘要】
【关键词】
【正文】

——浅谈小学数学建模思想的渗透

  笔者曾在杂志上看到过这样一则笑话:
  父:如果你有一个桔子,我再给你两个,那你数数看一共有几个桔子?
  子:我不知道,因为在学校里,我们是用苹果数的。
  这只是一则笑话而已,在我们的现实生活中应该不会存在,老师在教学生时,一定是这样教的:1个桔子+2个桔子=3个桔子,1个苹果+2个苹果=3个苹果,1个人+2个人=3个人,1颗树+2颗树=3颗树,…,直至抽象出1+2=3。数学抽象本就是一种概括,一种建模的过程。
  《数学课程标准》写到“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”,这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。
  一、与数学建模有关的几个概念
  要了解数学建模,首先必须弄清与数学模型有关的几个概念。
  1.什么是模型
  模型就是为了批量生产某一类产品而专门制作的“模子”,制作不同的产品需要不同的模型,但它一旦固定下就有专一的用途,是不可改变的。模型的产生会大大提高做事的效率,提高劳动生产力,是一种科技生产的手段,它代表了科技的发展。
  2.什么是数学模型
  目前在我国对数学模型还没有一个十分权威的定义,但比较一致的认识是:数学模型是对现实世界中的原型,为了某一个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。
  说得再通俗一点,数学模型就是为解决现实生活中的问题而建立的数学概念、公式、定义、定理、法则、体系等等。数学模型一般是用数学语言、符号、数量关系或图形来呈现的,具有精确性、直观性、简洁性等特点。如加法的交换律(人教版四年级下)这一数学模型,教材上同时用了多种形式来呈现这一模型,“两个加数交换位置和不变”这是用数学语言来描述的,“▲+★=★+▲”这是转化为了符号模型,“ɑ+b=b+ɑ”是字母模型。
  3.什么是数学建模
  数学建模就是建立数学模型,就是对现实世界中的原型,为了某一个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能“解决”实际问题的一种强有力的数学方法。数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。
  二、小学数学建模教学的现状分析
  从数学建模的概念中可以发现数学建模一般是指解决实际问题,要求学生能把实际问题归纳或抽象成数学模型加以解决。可以这样讲,只要有数学应用的地方,就有数学建模。
  1.?对数学建模的价值认识不足。
  现在有不少教师在进行教学设计时,目光仅仅落在“知识与技能”这一目标维度上,只是为教数学知识而设计教学,从铺垫到新课再到练习,亦步亦趋,学生缺少生活的原型作为支撑和背景,缺少探究发现数学规律、寻求数学方法、体会数学思想等体验。尽管也有一些“过程”的设计,但这一过程更多的是学科内部纯粹知识之间的演绎过程,缺少对学生数学建模意识的培养。
  如,在教学求比一个数多几的应用题,“小明家养了8只公鸡,养的母鸡只数比公鸡多2只,母鸡有几只?”在教学此例题时老师都采用让学生摆一摆、说一说等教学活动来帮助学生分析数量关系,理解“同样多的部分”和“多出的部分”,但一般同学们在解释数量关系式8+2=10时,绝大多数学生都会说“8只公鸡”加上“2只母鸡”等于10只母鸡,而很少学生会用“同样多的8只母鸡”加上?“比公鸡多的2只母鸡”等于10只母鸡。很显然,就问题解决而言答案是对的,但数学模式是不合理的。
  2.?用模意识差。
  教学内容与生活的联系方面,更多的是为联系而联系,是浅表性的,淡化了将“生活问题”进行“数学化”的处理过程,价值取向有偏差、不清晰,热衷于题型多样化,认为多样化的程度越高越好,缺少对多样化的共性分析、提炼及优化的过程,不能形成具有稳定性的一般模型。探究、合作拘泥于形式,缺少必要的引领和指导,很少将这些学习方式与建模联系起来,练习是单纯的技能训练,机械重复,没有“建模”和“用模”的痕迹。
  三、数学建模的基本体系
  数学课程标准倡导以“问题情景→建立模型→解释、应用与拓展”作为小学数学课程的一种基本叙述模式,并已经在教材中体现出按这一模式编写内容。
  1、创设问题情境,发现提出问题——建立模型准备;
   数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
  如教学平均数一课,新课伊始出示两个小组一分钟做题道数:
  第一组      9     8     9     6
  第二组      7     10   9     8
  教师提问:哪组获胜,为什么?
  这时出示,第一组请假的一位同学后来加入比赛。
  第一组      9     8     9     6     8
  第二组      7     10   9     8     
  师:根据比赛成绩我们判定一组获胜。
  此时有学生提出异议:虽然第一组做对的总道数比第二组多,但是两个队的人数不同,这样比较不公平。
  师:那怎么办呢?
  生:可以用平均数进行比较。
  师:什么是平均数?
  学生根据自己的生活经验进行总结。
  本节课平均数这一抽象的知识隐藏在具体的问题情境中,学生在两次评判中解读、整理数据,产生思维冲突,从而推进数学思考的有序进行。学生从具体的问题情境中抽出平均数这一数学问题的过程就是一次建模的过程,
  2、自主整理信息,探究解决问题——建立数学模型;
  数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
   如教学圆锥的体积一课:
  1、回顾、猜想:
  师:请同学们回忆我们在学习圆柱的体积推导过程中,应用了哪些数学思想方法?
  生:运用了转化的方法。
  师:猜一猜圆锥的体积能否转化成已经学过的图形的体积?它会与学过的哪种立体图形有关?
  学生大胆进行猜想,有的猜能转化成圆柱、有的猜能转化成长、正方体。
  2、动手验证
  师:请同学们利用手中的学具进行操作,研究圆锥体积的计算方法。
  教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。
  3、反馈交流
  生1:我们选取了一个圆锥和一个正方体进行实验,将正方体中倒满沙子,然后倒入圆锥容器中,到了四次,还剩下一些,发现圆锥体与这个圆柱体之间没有关系。
  生2:我们组选取的是圆锥和圆柱,这个圆锥与这个圆柱之间也没存在关系,然后我们换了一个圆柱,这个圆柱的体积是这个圆锥体积的三倍。
  4、归纳总结。
  师:那么存在3倍关系的圆柱和圆锥的底面有什么关系?它们的高又有什么关系?
  生3:底面积相等,高也相等。
  师:圆柱的体积和同它等底等高圆锥的体积的有什么关系?
  生:圆柱的体积是圆锥体积的3倍。
  生:圆锥的体积是同它等底等高的圆柱体权的1/3。
  师:是不是所有的等底等高的圆柱、圆锥都存在这样的关系?请每个组都选出这样的学具进行操作验证。
  生:汇报后师板书:
  圆锥的体积等于同它等底等高的圆柱体积的1/3。
  师:如果没有圆柱这一辅助工具,我们怎样计算圆锥的体积?
  生:圆锥的体积等于底面积乘高乘1/3。
  在上述教学过程中,教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索尝试过程中,进行了再创造学习,以抽象概括方式自主总结出圆锥体积计算公式。这一环节的设计,不仅发展了学生的策略性知识,同时让学生经历猜测与验证、分析与归纳、抽象与概括的数学思维过程。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
  3、解释应用拓展,体验数学价值——应用数学模型。
  用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
  如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:
  1、汽车4小时行驶了240千米,12小时可行驶多少千米?
  2、火车的速度是每小时130千米,火车早上8:00出发,14:00到站,两站之间的距离是多少千米?
  学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从4小时行驶了240千米中找到需要的速度,从8:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。
  又如学习了圆的周长后设计这样的题目:怎样利用你的自行车测量学校到家里的实际距离。
  这一问题的设计既考虑与学生生活的真实情景相结合,又能引起学生的猜测、估计、操作、观察、思考等具体的学习活动,并能使学生在具体的学习活动中学会搜集资料、分析问题。在解决实际问题中,学生需要搜集大量的信息,并从信息中剔除无用信息,留下有用信息,构建起数学模型,并运用数学模型进行计算、解决问题。在这一过程中,学生易于形成实事求是的态度以及进行质疑和独立思考的习惯,激发学生的创新精神。因此,我们在教学过程中,应注重学生建模思想的形成与运用。
  同时在小学数学教学实践中培养学生建立模型思想,培养学生的推理能力,要注意两个“问题”:第一个是从纷杂的实际问题中,筛选出有用信息,从而抽象成数学问题,也就是发现问题,提出问题,这是“数学建模”的起点;第二个是根据已提出的问题,全面分析其中的数量关系,探索出解决问题的方法并解决问题,必要时回顾反思解决问题的过程。也就是要分析数学问题,建立数学模型,这是“建立模型思想”的核心。
  教给学生一种好的建模思想就等于交给他们一把开启成功大门的钥匙。在小学数学教学中有目的的培养学生的数学建模思想,能够为学生架起一座从数学知识到实际问题的桥梁,学生在经历“问题情境建立模型解释应用与拓展”的过程中学会综合运用所学知识和方法解决简单实际问题。作为教师,我们要相信只要坚持,模型思想必定会在潜移默化中逐步建立、发展。