中国学术文献网络出版总库

刊名: 基础教育课程
主办: 教育部基础教育课程教材发展中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-6715
CN: 11-5187/G
邮发代号: 80-447
投稿邮箱:jcjykczz@163.com

历史沿革:
现用刊名:基础教育课程
曾用刊名:中小学图书情报世界
创刊时间:1993

初中数学建模活动的内容设计与组织原则

【作者】 陈 萍

【机构】 四川省南充第十一中学校

【摘要】
【关键词】
【正文】  在初中课程内容中,数学建模活动既没有明确的课程定位、目标要求,也未设置专题活动内容,更没有明确的教学要求、实施策略等,致使很多一线教师对初中数学建模活动的内涵、内容设计和组织原则等认识模糊,甚至将应用题教学与数学建模活动简单地画上等号。因而,正确理解初中数学建模活动的内涵,明确建模活动内容,掌握组织原则,才能取得预期的活动成效。
  一、 初中数学建模活动的内涵
  数学建模活动由数学、建模、活动三个关键词构成。“数学”凸显数学学科本质属性,蕴含着数学眼光、数学思维、数学语言等诸多含义,最终指向用数学知识分析和解决实际问题;“建模”是指运用数学符号系统建立数学模型;“活动”是指为实现学习目标而采取的行动。初中数学建模活动是指初中生(以下简称“学生”)在实际情境(生活情境、社会情境、科学情境和数学情境)中,从数学的视角发现和提出问题,用数学的方法分析问题,简化、假设、抽象出数学问题,建构数学模型,确定参数、求解验证,最终解决实际问题的学习活动。从建立和求解模型的过程与形态可以看出,模型思想的建立过程与数学建模活动过程的本质是一致的,都包含对现实问题进行数学抽象,用数学语言表达形成数学问题,用数学方法建构数学模型,计算求解模型并解释现实问题的活动过程。事实上,模型思想必然形成于数学建模活动的过程中。
  二、 初中数学建模活动的内容设计
  (一)构建数学模型活动
  数学建模中的“建模”是指建构数学模型。数学知识本身就是一种数学模型,从数学知识属性维度看,数学模型一般分为概念模型、方法模型和结构模型。因此,学生对数学知识的学习本质是一种构建数学模型的学习活动,构建数学模型是学生习得数学知识的基本途径。从初中数学建模活动(以下简称“数学建模活动”)的过程看,构建数学模型活动本身不是严格意义上的数学建模活动,而是数学建模活动过程的某个阶段或某个环节。在这类建模活动中,活动重点是渗透模型思想,使学生学会建构数学模型,为完成完整的数学建模活动奠基。
  (二)应用数学模型活动
  数学建模活动更强调的是建立模型和解决问题的过程。数学模型的价值在于将现实世界与数学的壁垒打通,通过数学模型连接现实世界与数学世界,使学生体悟数学建模的现实意义。现行初中数学教材注重数学与现实世界的联系,设置了大量的应用类问题,为学生应用数学模型解决实际问题提供了良好的载体。比如苏科版初中数学教材中勾股定理的简单应用、用一次函数解决问题、锐角三角函数的简单应用、收取多少保险费才合理等属于应用数学模型活动。虽然这些应用类问题具有封闭的、数据清楚、信息正好、结果唯一等特点,不同于真正的数学建模问题,但应用数学模型活动也属于数学建模过程的重要阶段,解决应用类问题所考查的能力往往正是数学建模过程中某些环节所需要的能力。教师要利用好这些素材,开展有意义的数学模型应用活动,在活动中渗透数学建模思想,重点提升学生建构数学模型解决应用题的能力。
  (三)主题综合实践活动
  主题综合实践活动是指以现实世界中实际问题为研究对象,明确具体研究主题,综合应用学科知识(不限于数学知识)解决实际问题的实践活动。在初中阶段,主题综合实践活动是数学建模活动的主要形式,是学生参与完整的数学建模活动,培养学生数学建模能力的重要途径。主题综合实践活动内容源于杂乱无序的现实世界,学生需从“原生态”的现实情境中抽象出数学问题,我们一般将其称为数学化能力。数学化能力是数学建模的关键成分,在主题综合实践活动设计中应予以重点关注。每个学期开展1~2次主题综合实践活动,有利于促进学生经历完整的数学建模活动过程,培养数学建模能力。
  三、 初中数学建模活动的组织原则
  (一)阶段性原则
  阶段性原则是指根据初中数学教学内容,参照数学建模过程将数学建模活动分为不同的阶段,发挥数学建模活动的教育价值。数学建模活动是一个完整的解决实际问题的过程,具体包括现实原型——实际模型——数学模型——模型求解——检验解释等。在初中数学学习中,受数学知识与数学能力所限,我们不可能也没必要使学生经常性地经历完整的数学建模活动过程。在平时数学知识的教学中,注重渗透数学模型思想,引导学生经历数学建模的某个环节或某个阶段,体现数学建模活动的阶段性原则。初中数学建模活动一般分为三个阶段:标准数学模型学习阶段、用数学模型解决实际问题(应用题)阶段、主题建模实践阶段。三个阶段由低到高、层层递进,教学中应根据数学建模活动的内容特点,对建模活动目标精准定位,分阶段、分层次培养学生的数学建模能力。
  (二)适切性原则
  适切性原则是指数学建模活动内容应源于学生熟悉的、真实的实际情境,符合学生的认知基础、智力水平和心理特点,注意学生解决问题能力上的差异。从实际情境的视角看,选用的问题情境要符合实际情况,是学生熟悉的情境。对于综合性实际情境,应具备一定的挑战性,有利于促进学生主动学习数学、物理等相关学科知识,但建立数学模型时涉及的数学及跨学科知识应符合其认知水平,不能随意提高数学建模活动的要求。从数学建模的教育价值看,数学建模活动应在学生解决实际问题能力的基础上,运用数学知识又不限于数学知识主动连接现实世界,感受数学建模的应用价值。
  (三)发展性原则
  发展性原则是指组织的数学建模活动应能驱动学生积极主动参与建模活动,发展学生的数学建模能力。发展性原则属于数学建模活动的目标范畴,即为什么组织、为谁组织数学建模活动?发展学生的数学建模能力是数学建模活动的出发点和落脚点,在组织不同类型的数学建模活动时,都应遵循发展性原则,提高数学建模活动立意,将活动目标落到实处。
  综上所述,基于初中数学建模活动的内涵分析,将初中学段的建模活动内容划分为构建数学模型、应用数学模型、主题综合实践等三类,指出初中数学建模活动应遵循抽象性、阶段性、适切性、发展性等组织原则